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An unsupervised learning method is presented for determining global ma-

rine ecological provinces (eco-provinces), from plankton community structure 

and nutrient fux data. The Systematic AGgregated Eco-province (SAGE) 

method identifes eco-provinces within a highly non-linear ecosystem model. 

To accommodate the non-Gaussian covariance of the data, SAGE employs 

t-stochastic neighbor embedding (t-SNE) to reduce dimensionality. Over a 

hundred eco-provinces are identifed with the Density-Based Spatial Cluster-

ing of Applications with Noise (DBSCAN) algorithm. Using a connectivity 

graph with ecological dissimilarity as the distance metric, robust aggregated 

eco-provinces (AEPs) are objectively defned by nesting the eco-provinces. Us-

ing the AEPs the control of nutrient supply rates on community structure is 

explored. Eco-provinces and AEPs are unique and aid model interpretation. 

They could facilitate model inter-comparison, and potentially improve under-
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standing and monitoring of marine ecosystems. 

Introduction 

Provinces are regions in the ocean or on land where the complex biogeography has been orga-

nized into coherent and meaningful regions (1). Such provinces are important for comparing 

and contrasting locations, characterizing observations, monitoring, and conservation efforts. 

The intractably complicated and non-linear interactions that create these provinces make unsu-

pervised machine learning (ML) methods well suited to objectively determine provinces, be-

cause the covariances within the data manifest as intricate and non-Gaussian. Here, an ML 

method is presented that systematically identifes unique marine ecological provinces (eco-

provinces) from the Darwin global 3 dimensional physical/ecosystem model (2). The term 

”unique” is used to signify that the identifed region is suffciently different from other re-

gions that they do not overlap. The method is called the Systematic AGgregated Eco-province 

method (SAGE). For useful classifcation, an algorithmic method needs to allow for both 1) 

global classifcation, and 2) a multi-scale analysis that can be both spatially and temporally 

nested/aggregated (3). In this study, the SAGE method is frst presented, and the identifed eco-

provinces are discussed. The eco-provinces could facilitate understanding of factors controlling 

community structure, provide insight useful for monitoring strategies, and assist in the tracking 

of ecosystem changes. 

Terrestrial provinces are often classifed according to similarity in climate (precipitation, 

temperature), soil, vegetation, and fauna, and used to aid management, biodiversity studies, and 

disease control (1, 4). Ocean provinces are more diffcult to defne. The majority of organisms 

are microscopic, and the boundaries are fuid. Longhurst (5) provided one of the frst global 

classifcations of marine provinces based on environmental conditions. These ”Longhurst” 
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provinces were defned using variables such as mixing rates, stratifcation and irradiance, along 

with Longhurst’s extensive experience as a seagoing oceanographer of other key conditions im-

portant to the marine ecosystem. The Longhurst provinces have been widely used, for example 

to assess primary production, carbon fuxes, to aid fsheries and to plan in situ observational 

campaigns (5–9). Toward defning provinces more objectively, methods such as fuzzy logic and 

regional unsupervised clustering/statistics have been used (9–14). Such methods have the goal 

of identifying meaningful structures that can identify provinces in available observational data. 

For instance, dynamic seascape provinces (12) use self organizing maps to reduce noise, and hi-

erarchical (tree based) clustering to identify provinces on the basis of regional satellite derived 

ocean color products (Chlorophyll-a, normalized fuorescence line height, colored dissolved 

organic material) and physical felds (sea surface temperature and salinity, absolute dynamic 

topography and sea ice). 

Plankton community structure are of interest as their ecology has a large impact on higher 

trophic levels, and also on carbon uptake and hence climate. Despite this, identifying global 

eco-provinces based on plankton community structure remains a challenging and elusive goal. 

Ocean color satellites can potentially offer insight in terms of coarse grained size fractiona-

tion of phytoplankton, or suggest dominance of functional groups (15), but cannot currently 

provide details of community structure. Newer surveys (e.g. TARA ocean (16)) are providing 

unprecedented measurements of community structure, there are at present only sparse in situ 

observations at a global scale (17). Previous studies have largely determined ”biogeochem-

ical provinces” based on identifying biochemical similarities such as in primary production, 

Chl and available light (12, 14, 18). Here, numerical model output (Darwin (2)) is used, and 

eco-provinces are determined in terms of community structure and nutrient fuxes. The numer-

ical model used in this study has global coverage and compares favorably to available in situ 

3 



data (17) and remotely sensed felds (note S1). The numerical model data used in this study has 

the advantage of global coverage. The model ecosystem consists of 35 phytoplankton and 16 

zooplankton types (see materials and methods). The model plankton types interact non-linearly, 

with non-Gaussian covariance structure, such that simple diagnostics are not well suited to iden-

tifying unique and coherent patterns in the emergent community structure. The SAGE method 

presented here provides a novel method to examine the complex Darwin model output. 

The transformative power of data science/ML techniques can allow overwhelmingly com-

plicated model solutions to reveal complex, but robust, structures in the covariance of data. 

A robust method is defned as one that can faithfully reproduce results within a given error 

margin. Determining robust patterns and signals is a challenge even in simple systems. Emer-

gent complexity can appear complicated/intractable until the underlying principles giving rise 

to the observed patterns are determined. Key processes setting ecosystem composition are 

inherently non-linear. The presence of non-linear interactions can confound robust classifca-

tion, and methods that make strong assumptions about the underlying statistical distributions 

of the covariance of data need to be avoided. High-dimensional and non-linear data is com-

mon in oceanography, and likely have covariance structures with intricate, non-Gaussian, topol-

ogy. While data with a non-Gaussian covariance structure can hamper robust classifcation, the 

SAGE method is novel as it was designed to allow identifcation of clusters with arbitrary topol-

ogy. 

The goal of the SAGE method is to objectively identify emergent patterns that could help 

further ecological understanding. Following a clustering based work-fow similar to that in (19), 

the ecological and nutrient fux variables are used to determine unique clusters within the data, 

referred to as eco-provinces. The SAGE method presented in this study (Fig. 1) frst reduces 
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the dimensionality from 55 to 11 dimensions by summing over the a priori defned plankton 

functional groups (see materials and methods). The dimensionality is further reduced by a 

probabilistic projection onto a 3 dimensional space using the t-Stochastic Neighbourhood Em-

bedding (t-SNE) method. Unsupervised clustering identifes regions of close ecological prox-

imity (Density-based spatial Clustering of Applications with Noise, DBSCAN). Both t-SNE 

and DBSCAN are suitable for the inherently non-linear ecosystem numerical model data. The 

resulting eco-provinces are then back-projected onto the globe. Over a hundred unique eco-

provinces are determined, suitable for regional studies. To consider global coherent ecosystem 

patterns, the eco-province utility is increased by aggregating eco-provinces (AEPs) down to an 

adjustable level of ”complexity” defned as the level of aggregation. The minimum complexity 

number for robust AEPs is determined. The chosen focus is on the SAGE method, and on ex-

ploring the minimal complexity AEPs case to determine controls on the emergent community 

structures. Patterns can subsequently be analyzed, offering ecological insight. The approach 

presented here can also be used more widely, for example for model inter-comparison by as-

sessing where similar eco-provinces are found in different models to highlight discrepancies 

and similarities. 

Results: Identifying and aggregating eco-provinces 

The SAGE method defnes eco-provinces using output from a global 3 dimensional physi-

cal/ecosystem numerical model (Darwin (2), see materials and methods and note S1). The 

ecosystem component consists of 35 phytoplankton types and 16 zooplankton types, with 7 a 

priori defned functional groups: prokaryotes and eucaryotes adapted to low nutrient environ-

ments, coccolothophores with calcium carbonate coverings, nitrogen fxing diazotrophs (often 

a key missing nutrient), diatoms with silicous coverings, mixotrophic dinofagellates that both 
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(a) Work fow repeated ten times 

(b) Determining the Aggregated Eco-Provinces (AEPs) 

Figure 1: The SAGE method workfow. Upper panel is Fig. 1a is a sketch of the work-fow to 
determine the eco-provinces; The raw 55 dimensional data in reduced using summation within 
functional groups to 11 dimensional model output, it includes biomass of 7 functional/trophic 
groups of plankton and 4 nutrient supply rates. Negligible values and persistent ice cover ar-
eas are discarded. Data is normalized and standardized. The 11 dimensional data is given 
to the t-SNE algorithm to highlight statistically similar feature combinations. DBSCAN se-
lects the clusters carefully setting parameter values. The data is fnally projected back onto a 
latude/longitude projection. Note this process is repeated 10 times as a slight stochastic element 
is possible through the application of t-SNE. Lower panel Fig. 1b illustrates how the AEPs are 
arrived at by repeating the work-fow in Fig. 1a ten times. For each of the ten realisations, 
the inter province BC-dissimilarity matrix is determined based on the biomass of the 51 phy-
toplankton types. The BC-dissimilarity within the aggregated provinces is determined going 
from a complexity of 1 AEP to full complexity of 115. The BC-benchmark is set by Longhurst 
provinces. 
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photosynthesize and graze other plankton, and zooplankton grazers. Sizes span 0.6µm to 2500 

µm equivalent spherical diameter. The model distribution of size and functional grouping of 

phytoplankton capture gross features seen in satellite and in situ observations (see Fig. S1-3). 

The similarity between the numerical model and the observed ocean suggests that provinces 

defned from the model may have application to the in situ ocean. Note the caveats that the 

model only captures some of the diversity of phytoplankton, and only some of the range of 

physical and chemical forcings of the in situ ocean. The SAGE method could lead to a better 

understanding of the highly regional controlling mechanisms of the model community structure. 

The dimensionality of the data is initially reduced by including only the surface, 20 year 

time-mean sum of biomass, within each plankton functional group. Surface source terms for the 

fux of nutrients (Nitrogen, Iron, Phosphate and silicic acid supply) are also included, following 

earlier studies showing their key roles in setting community structure (e.g. (20,21)). Summation 

over functional groups reduces the problem from 55 (51 plankton and 4 nutrient fuxes) to 

11 dimensions. In this initial study, depth and temporal variability are not considered due to 

computational limitations imposed by the algorithms. 

Dimensionality reduction with t-SNE 

The SAGE method is able to identify important relationships between the non-linear processes 

and interacting key features in the biomass of functional groups and nutrient fuxes. Obtain-

ing robust, reproducible, provinces is not possible with the 11 dimensional data using learning 

methods based on Euclidean distances such as K-means (19, 22). This is because the underly-

ing distribution of the covariance of key features that defne the eco-provinces are not seen to 

inhabit shapes that are Gaussian. K-means, using Voronoi cells (straight lines), is not able to 

preserve non-Gaussian underlying distribution. 
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The 7 plankton functional group biomasses and the 4 nutrient fuxes form an 11 dimensional 

vector, x. Thus, x is a vector feld on the model grid, where each element xi represents the 11 

dimensional vector defned on the model’s horizontal grid. Each index i uniquely identifes a 

grid point on the sphere, with (lon,lat) = (φi, θi). The log of the biomass data is used, and is 

discarded if a model grid cell has a biomass less than 1.2 × 10−3mgChl/m3 or ice cover is over 

70%. The data is normalized and standardized such that all data exist on the range [0 to 1], 

with the mean removed and scaled to unit variance. This is done so the features (biomass and 

nutrient fuxes) do not become conditioned by contrasts in the ranges of possible values. The 

clustering should capture the variational relationships from the key probabilistic distances be-

tween features rather the geographic distances. Quantifying these distances, important features 

emerge while unnecessary detail is discarded. In ecological terms, this is necessary because 

some phytoplankton types that have little biomass can have large biogeochemical impact, e.g. 

diazotrophs fxing nitrogen. The covariability of these types is highlighted when the data is 

standardized and normalized. 

The t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm is used to make ex-

isting similar regions stand out more clearly, by emphasizing feature proximity in the high-

dimensional space in a lower dimensional representation. Previous work aiming to build deep 

neural networks for remote sensing applications employed t-SNE, demonstrating its skill in 

separating key features (23). This is a necessary step towards identifying robust clusters in the 

feature data, while avoiding non-convergent solutions (note S2). Using a Gaussian kernel, t-

SNE preserves the statistical properties of the data by mapping each high-dimensional object 

onto a point in three-dimensional phase space in a way that ensures a high probability of similar 

objects being close in both the high and low-dimensional space (24). Given a set of N high-
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dimensional objects x1 ,..., xN , the t-SNE algorithm performs a reduction by minimizing the 

Kullback-Leibler (KL) divergence (25). The KL divergence is a measure of how different one 

probability distribution is from a second reference probability distribution. Effectively, assess-

ing the likelihood of association between a low dimensional rendition of the high dimensional 

features. If xi is the i-th object and xj the j-th object in the N dimensional space and, yi is the 

i-th object and yj is the j-th object in the low-dimensional space, t-SNE defnes a probability of 

similarity, p: 
exp(−kxi − xj k2/2σ2

i ) pj|i = P ,
exp(−kxi − xkk2/2σ2

k=i i )

and the same for a reduced dimensional set: 

(1 + ky − y k2)−1 

qi|j = P i j 
. 

k=i(1 + kyj − y 2 −1 
kk )

The KL divergence is: X pij
KL(P ||Q) = pij log 

qij
i=j 

Fig. 2a illustrates the effect of reducing the 11 dimensional combined biomass and nutrient 

fux vector set to 3D. The motivation for applying t-SNE can be likened to that of principal 

component analysis (PCA); using variance attributes to emphasize regions/properties of the 

data and thus reduce the dimensionality. The t-SNE method was found to be superior to PCA 

in delivering robust and reproducible results for the eco-provinces (see note S2). This is likely 

because the orthogonality assumption that underlies PCA is not appropriate for identifying key 

interactions between highly non-linearly interacting features, because PCA focuses on linear 

covariance structure (26). Using remotely sensed data, Lunga et. al (27) illustrates how com-

plex and non-linear spectral features that depart from Gaussian distributions can be highlighted 

employing SNE methods. 

6

6

6
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Clustering: Finding similar regions with DBSCAN 

The points in the t-SNE scatter plot in Fig. 2a are each associated with a latitude and longitude. 

If two points are close to each other in Fig. 2a, this is because their biomass and nutrient fuxes 

are similar, not due to geographical proximity. The colors in Fig. 2a are the clusters found using 

the DBSCAN method (28). Looking for densely packed observations, the DBSCAN algorithm 

uses the distance in the 3 dimensional representation between points (�=0.39, see materials and 

methods for a discussion of this choice), and the number of similar points needed to defne a 

cluster (here 100 points, see above). The DBSCAN method makes no assumptions about the 

shapes or numbers of clusters in the data, as follows: 

1. A random datapoint yi is selected. 

2. The number of immediately neighbouring points within distance � of yi is measured. 

3. The cluster boundary is determined repeating step 2 iteratively for all points identifed as 

within distance �. If the number of points is larger than the set minimum it is designated 

as a cluster. 

4. A new point is chosen at random from the remaining unclassifed data, and the method 

repeated. 

The data that does not meet the minimum cluster member and distance � metric are counted 

as ”noise”, and not assigned a color. DBSCAN is a fast and scalable algorithm, with a worst-

case performance of O(n2), and is effectively not stochastic for the present analysis. Setting 

the minimum number of points was determined using expert assessment, with results not being 

robust within ≈ ±10 after adjustment of the distance �. This distance was set using the degree 

of connectiveness (Fig. 6a) and the percentage of ocean covered (Fig. 6b). The connectiveness 
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is defned as the resultant number of clusters, and is sensitive to the � parameter. A low con-

nectiveness indicates under-ftting, artifcially grouping areas together. A high connectiveness 

indicates over-ftting. A higher minimum number could conceivably be used, but arriving at a 

robust solution would be unlikely if the minimum exceeds ca. 135 (see materials and methods 

for further details). 

Back-projecting onto the globe 

The 115 clusters identifed in Fig. 2a are presented projected back onto the globe in Fig. 2b. 

Each color corresponds to a coherent combination of biogeochemical and ecological factors 

identifed by DBSCAN. Once the clusters are determined, the association of each point in Fig. 

2a to a specifc latitude and longitude is used to project clusters back to the geographical do-

main. Fig. 2b illustrates this, with colors of clusters the same as in Fig. 2a. Similar colors 

should not be interpreted as ecological similarity, as they are assigned by the order in which the 

algorithm discovers clusters. 

Regions in Fig. 2b can be seen as qualitatively similar to established regions in the physics 

and/or biogeochemistry of the ocean. For example, the clusters in the Southern Ocean are 

zonally symmetric, oligotrophic gyres emerge, sharp transitions suggest the infuence of trade 

winds, and distinct regions associated with upwelling are seen e.g. in the equatorial Pacifc. 

Ecological similarity: BC-dissimilarity 

To understand the ecological context of the eco-provinces, the intra-cluster ecology is assessed 

using a variant on the Bray-Curtis Dissimilarity metric (BC, (29)). The BC metric is a statistic 
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(a) t-SNE projection with provinces in colour (b) Spatial representation provinces in Fig. 2a BC-dissimilarity 

Figure 2: Eco-provinces geographical and in t-SNE space. The left Fig. 2a showing modelled 
nutrient supply rates, phytoplankton and zooplankton functional group biomass as rendered 
by the t-SNE algorithm, and colored by province using DBSCAN. Each point represents one 
point in the high dimensional space, with the majority of points captured as is demonstrated 
in the Fig. 6b. Axes refer to the ”t-SNE” dimensions 1, 2 and 3. To the right Fig. 2b shows 
the geographical projection of the provinces discovered by DBSCAN onto the origin latitude 
longitude grid. Colours should be considered arbitrary but correspond to Fig. 2a. 
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used to quantify the community structure dissimilarity between two different sites. The BC 

metric is applied to the biomass of the 51 types of phyto- and zooplankton: 

2CninjBCninj = 1 − ,
Sni + Snj 

BCninj refers to the dissimilarity of assemblage ni compared to assemblage nj , where the 

Cninj is the minimum of biomass of individual types present in both assemblages ni and nj 

while Sni refers to the sum over all the biomass present in both assemblages ni and Snj . The 

BC-dissimilarity is similar to a distance metric, but operates in a non-euclidean space which is 

likely better suited to ecological data and its interpretation. 

For each cluster identifed in Fig. 2b, the intra- and inter-province BC-dissimilarity can be 

assessed. The intra-province BC-dissimilarity refers to the dissimilarity between the province 

mean and each point in it. The inter-province BC-dissimilarity refers to how similar one 

province is to each other province. Fig. 3a illustrates the symmetric BC matrix where 0 (black: 

perfect correspondence) and 1 (white: completely dissimilar). Each line in this plot demon-

strates patterns in the data. Fig. 3b demonstrates the geographical implications of the BC 

results from Fig. 3a for individual provinces. For a province in the low nutrient oligotrophic 

region, Fig. 3b demonstrates that large areas are reasonably similar symmetrically around the 

equator and in the Indian Ocean, but the higher latitudes and upwelling regions are markedly 

different. 

The intra-province BC-dissimilarity within each province from Fig. 2b is illustrated in Fig. 

4a. Determined using the mean area averaged assemblage within one cluster, and determining 

the BC-dissimilarity of each gridpoint within the province to the mean, it illustrates how well 

the SAGE method is able to separate the 51 types of the model data according to ecological 
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similarity. The global mean intra-cluster BC-dissimilarity for all 51 types is 0.102±0.0049. 

The equivalent Longhurst intra-province BC-dissimilarity is presented in Fig. 4b using the 

biomass of the 51 plankton types, with a global mean across provinces of 0.227, and a stan-

dard deviation across grid-points referenced to the province BC dissimilarity of 0.046. This 

is larger than for the clusters identifed in Fig. 1b. Using the sum of the 7 functional groups 

instead, the mean intra-seasonal BC-dissimilarity of the Longhurst provinces increases to 0.232. 

The maps of the global eco-provinces offer intricate detail of ecological interactions that are 

unique, and offer a refnement in terms of ecosystem structure over using Longhurst provinces. 

The eco-provinces are anticipated to provide insight into the processes controlling the numerical 

model ecosystem, and such insights could assist exploration of in situ efforts. For the purpose of 

this study, the over hundred provinces cannot be adequately showcased. The following section 

presents the SAGE method to aggregate provinces. 

Defning Aggregated Eco-Provinces (AEPs) 

One of the uses of provinces is to facilitate understanding of where they are and how they are 

governed. To identify emergent properties the method in Fig. 1b illustrates the nesting of eco-

logically similar provinces. Eco-provinces are grouped together in terms of their ecological 

similarity, and these grouping of provinces are called ”Aggregated Eco-Provinces” (AEPs). An 

adjustable level of ”complexity” is set in terms of the number of aggregated provinces that will 

be considered. The term ”complexity” is used, as it allows the level of the emergent properties 

to be adjusted. For defning meaningful aggregation, the mean intra-province BC-dissimilarity 

from the Longhurst provinces of 0.227 is used as a benchmark below which the aggregated 

14 



(a) Symmetric BC matrix (b) Spatial representation of one column in Fig. 3a BC-dissimilarity 

Figure 3: The eco-province Bray-Curtis Dissimilarity. The left Fig. 3a Bray-Curtis Dissim-
ilarity metric evaluated for every province compared to every other for the global surface 20 
year mean of the 51 plankton biomasses. Note the expected symmetry of the values. The spatial 
projection of one column (or row) is illustrated in the right Fig. 3b. The global distribution of 
Bray-Curtis Dissimilarity metric evaluated for a province in the oligotrophic gyre compared to 
every other for the global surface 20 year mean. Black (Bray-Curtis = 0) denotes an identical 
region, while white (Bray-Curtis = 1) denotes no similarity. 
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provinces are no longer considered useful. 

The eco-provinces are coherent across the globe as Fig. 3b demonstrates. Some confgura-

tions are very ”common”, as seen using the inter-province BC-dissimilarity. Inspired by meth-

ods from genetics and graph theory, ”connectivity graphs” are used to sort the > 100 provinces 

according to which province they are most similar to. The metric of ”connectivity” here is deter-

mined using the inter-province BC-dissimilarity (30). The number of spatially larger provinces 

that the > 100 provinces can be sorted into is here referred to as the ”complexity”. The ag-

gregated eco-provinces (AEPs) are the product of sorting the full > 100 provinces into this 

subset of the most dominant/highly connected eco-provinces; each eco-province is assigned to 

the dominant/highly connected eco-province they are most similar to. This aggregation deter-

mined by the BC-dissimilarity allows a nested approach to global ecology. 

The chosen complexity can be anything from 1 to the full complexity from Fig. 2a. At 

low complexities the AEPs can become degenerate, due to the probabilistic dimensionality-

reduction step (t-SNE). Degeneracy implies that the eco-provinces could be assigned to differ-

ent AEPs between iterations, changing the geographical area covered. Fig. 4c illustrates the 

spread of the intra-province BC-dissimilarity in the AEPs of increasing complexity across ten 

realizations (illustration in Fig. 1b). In Fig. 4c the 2σ (blue area) is a measure of the degeneracy 

within the ten realizations, and the green line represents the Longhurst benchmark. A complex-

ity of 12 is demonstrated to keep the intra-province BC-dissimilarity both below the Longhurst 

benchmark in all realizations, and a relatively small 2σ degeneracy. In sum, the minimum 

recommended complexity is 12 AEPs, for which the mean intra-province BC-dissimilarity as-

sessed using the 51 plankton types is 0.198 ±0.013, as seen in Fig. 4d. Using the sum of 

the 7 plankton functional groups, the mean intra-province BC-dissimilarity 2σ is instead 0.198 
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±0.004. The comparison between the BC-dissimilarity computed with either the 7 functional 

group summed biomass or the full 51 plankton types’ biomasses suggests the SAGE method 

is appropriate for the 51 dimensional case although it was trained on the biomass sum of the 7 

functional groups. 

Depending on the purpose of any study, a different level of complexity could be considered. 

A regional study might want the full complexity (i.e. all 115 provinces). As an example and for 

clarity, the lowest recommended complexity 12 is considered. 

Utility of Aggregated Eco-Provinces: Community structure and their con-
trols 

As an example of the utility of the SAGE method, here the minimum complexity 12 AEPs 

are used to explore the controls on the emergent community structure. Fig. 5 illustrates the 

ecological insights grouped by AEPs (named A to L): The geographical extent (Fig. 5c), func-

tional group biomass composition (Fig. 5a) and nutrient supply (Fig. 5b) scaled by N in the 

stoichiometric Redfeld ratio (N:Si:P:Fe, 1:1:16:16×103) are shown. For this latter panel, P is 

multiplied by 16 and Fe by 16×103 so the bars are comparable to the phytoplankton nutrient 

requirements. 

The identifed AEPs are unique. There is some symmetry around the equator in the At-

lantic and Pacifc ocean, and similar, but augmented regions exist in the Indian ocean. Some 

AEPs hug the western sides of continents associated with upwelling regions. The Antarctic 

Circumpolar Current (ACC) is seen as a large zonal feature. The subtropical gyres stand out as 

complex series of oligotrophic AEPs. The familiar patterns of differences in biomass between 
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(a) Full complexity intra-province BC-dissimilarity (b) Longhurst intra-province BC-dissimilarity 

(c) Longhurst criterion (d) Complexity 12 intra-province BC-dissimilarity 

Figure 4: Heuristic Processes to determine a minimum level of biogeochemical complexity. 
For Fig. 4a, b and d the intra-province BC-dissimilarity is assessed as the mean BC dissimilarity 
of the individual gridpoint communities compared to the mean province with no reduction in 
complexity. For Fig. 4b, the global mean intra-province BC-dissimilarity is 0.227±0.117. This 
is the benchmark for the ecologically motivated sorting presented in this work (green line in Fig. 
4c). The bottom left Fig. 4c shows the averaged intra-province BC-dissimilarity: The black 
line illustrates the intra-province BC-dissimilarity of increasing complexity. The 2σ is from 
10 repeats of the eco-province recognition process. For the full complexity in the provinces 
discovered by DBSCAN, Fig. 4a illustrates that an intra-province BC-dissimilarity of 0.099 
is reached, while sorting into a complexity of 12 as suggested by Fig. 4c results in an intra-
province BC-dissimilarity of 0.200 is reached as demonstrated in Fig. 4d. 
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picoplankton dominated oligotrophic gyres and diatom rich polar regions is apparent in these 

provinces. 

AEPs with very similar total phytoplankton biomass can have very different community 

structure, and cover very different geographical areas, such as D,H and K which have similar 

total phytoplankton biomass. AEP H is present mainly in the equatorial Indian ocean and has 

a larger population of diazotrophs. AEP D is found in several basins, but is prominent in the 

Pacifc surrounding the very highly productive region around the Equatorial upwelling. The 

shape of this province in the Pacifc is reminiscent of planetary wavetrains. AEP D has very 

few diazotrophs but more cocolithophores. AEP K is found only in the high Arctic ocean, and 

has more diatoms, and fewer picoplankton than the other two provinces. It is notable that zoo-

plankton biomass in the three regions is also very different, with AEP K having relatively low 

zooplankton abundance, but AEP D and H having relatively similar, higher, levels. Thus though 

their biomass (and hence also Chl-a) are similar, these provinces are very different: Chlorophyll 

based province detection would likely not capture these differences. 

It is also apparent that some AEPs that have very different biomass can be similar in terms 

of their phytoplankton community structure. This is seen in AEP D and E for example. These 

are close to each other, notably in the Pacifc, where AEP E is close to the highly productive 

AEP J. Again, there is not a clear connection between phytoplankton biomass and zooplankton 

abundance. 

The AEPs can be understood in terms of the nutrient supplies to them (Fig. 5b). Diatoms 

only exist where there is suffcient silicic acid supply; generally the higher the silicic acid supply 

the higher the diatom biomass. Diatoms are seen in the AEPs A, J, K, and L. The proportion 
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of diatom biomass relative to other phytoplankton is dictated by how much N, P and Fe are 

supplied, relative to the diatoms demands. For instance AEP L is dominated by diatoms, and 

has the highest supply of Si relative to the other nutrients. In contrast, though more productive, 

AEP J has fewer diatoms and less Si supply (both total and relative to the other nutrients). 

Diazotrophs have the ability to fx N, but also grow slowly (31). They coexist with other 

phytoplankton where there is an excess of Fe and P relative the the demands of the non-

diazotrophs (20, 21). It is notable that there is higher diazotroph biomass where the amount 

of Fe and P supply are relatively large relative to the N supply. In this manner, the diazotroph 

biomass is larger in AEP H than in J, although the overall biomass in AEP J is higher. It is 

worth noting that AEP J and H are very different geographically, with H located in the equato-

rial Indian Ocean. 

The insight gained from patterns in the minimum complexity of 12 AEPs would be much 

less clear if the unique ecosystem structure were not separated into provinces. SAGE gener-

ated AEPs facilitate the coherent and simultaneous comparison of the complicated and high-

dimensional information from the ecosystem model. The AEPs effectively highlight why and 

where chlorophyll is not a good proxy for determining community structure, or abundance of 

zooplankton in higher trophic levels. A detailed analysis of the topic of an ongoing study be-

yond scope of this paper. The SAGE method provides a way to explore other mechanisms in 

the model in a more tractable way than looking from point to point. 
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(a) Ecological ensemble (b) Nutrient fuxes 

(c) Global provinces 

Figure 5: AEP interpretation for complexity 12. Sorting the provinces into the 12 aggregated 
eco-provinces (AEPs) A to L. Top left Fig. 5a showing biomass (mgC/m3) of the ecological en-
semble in the 12 provinces. Top right Fig. 5b the nutrient fuxes rates (mmol/m3/y) for dissolved 
inorganic nitrogen (N), Iron (Fe), phosphate (P) and silicic acid (Si). Fe and P are multiplied by 
16 and 16×103 respectively, so that the bars are normalized to the phytoplankton stoichometric 
requirements. Bottom panel Fig. 5c. Note the distinction between Polar, subtropical gyres and 
dominantly seasonal/upwelling regions in the bottom panel. Monitoring stations marked are 1: 
SEATS, 2: ALOHA, 3: Station P, and 3: BATS. 
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Discussion and Conclusion 

The SAGE method is presented, designed to help elucidate the overwhelmingly complicated 

ecological data from a global physical/biogeochemical/ecosystem numerical model. Eco-provinces 

are determined by summation of biomass across plankton functional groups, application of the 

t-SNE probabilistic dimensionality reduction algorithm, and clustering using the unsupervised 

ML method DBSCAN. An inter-province BC-dissimilarity/graph theory method for nesting is 

applied to arrive at robust AEPs, useful for global interpretation. Both the eco-provinces and 

AEPs are unique by construction. The AEP nesting can be adjusted between the full complex-

ity of the original eco-provinces and the minimum recommended threshold of 12 AEPs. The 

nesting and determination of a minimal complexity for AEPs is seen as a crucial step, as the 

probabilistic t-SNE makes the <12 complexity AEPs degenerate. The SAGE method is global, 

and spans a complexity range from >100 AEPs to 12. For simplicity, the present focus is on 

the complexity 12 global AEPs. Future studies, particularly regional ones, could fnd a smaller 

spatial subset within the global eco-provinces useful, and potentially perform the aggregation 

within such a smaller region to leverage the same ecological insight as is discussed here. Sug-

gestions are offered regarding how these eco-provinces, and insight gained from them, could 

be used to further ecological understanding, facilitate model inter-comparison, and potentially 

improve monitoring of marine ecosystems. 

The eco-province and AEPs that the SAGE method identifed are based on data from a nu-

merical model. Numerical models are by defnition simplifed constructs that attempt to capture 

the essence of a target system, and different models can vary in their plankton distributions. 

The numerical model used in this study does not fully capture some of the patterns observed 

(e.g. in Chl estimates of the equatorial regions and Southern ocean). Capturing only a fraction 
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of the diversity in the real ocean, and not resolving the meso- and sub-mesoscale, likely impact 

nutrient fuxes and smaller scale community structures. Despite these shortcomings, AEPs are 

shown to be useful in helping to understand the complex model. The AEPs offer a potential 

numerical model inter-comparison tool, by assessing where similar ecological provinces are 

found. The present numerical model captures gross patterns of remotely sensed phytoplankton 

Chl-a concentrations, and distributions of plankton size and functional groups (note S1 and Fig. 

S1 (2, 32)). 

The AEPs ft into oligotrophic versus mesotrophic regions as indicated by the 0.1mg Chl-

a/m−3 contour (Fig. S1b): AEPs B, C, D, E, F, G are oligotrophic, and the remainder are in 

regions of higher Chl-a. The AEPs show some correspondence to the Longhurst provinces (Fig. 

S3a), for example the Southern Ocean and equatorial Pacifc. In some regions the AEPs cover 

several Longhurst regions, and visa versa. Since the intent of the delineation of provinces here 

and in Longhurst are not the same, differences are anticipated. Multiple AEPs within a single 

Longhurst provinces suggest that some regions with similar biogeochemistry may have very 

different ecosystem structure. The AEPs show some correspondence to physical regimes as 

revealed using unsupervised learning (19), such as in high upwelling regimes (e.g. Southern 

Ocean and the Equatorial Pacifc, Fig. S3c,d). Such correspondences suggest where plankton 

community structure is strongly infuenced by ocean dynamics. In regions such as the North At-

lantic, AEPs cross through physical provinces. Mechanisms causing these discrepancies could 

include processes such as dust delivery leading to very different nutrient regimes even within a 

similar physical regime. 

The eco-provinces and AEPs suggest that using chlorophyll alone is not able to identify 

ecological composition, as is already appreciated by the marine ecological community. This is 
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seen in AEPs with similar biomass but markedly different ecological composition in (e.g. D 

and E). In contrast, AEPs such as D and K have very different biomass but similar ecological 

composition. The AEPs emphasize that the relationship between biomass, ecological composi-

tion and zooplankton abundance is complex. For example, while AEP J stands out in terms of 

both high phytoplankton and zooplankton biomass, AEP’s A and L have similar phytoplankton 

biomass but A has much higher zooplankton abundance. The AEPs highlight that phytoplank-

ton biomass (or Chl) cannot be used to predict zooplankton biomass. Zooplankton are the base 

of the food-chain for fsheries, and more accurate estimates could lead to better resource man-

agement. Future ocean colour satellites (e.g. PACE) might be better positioned to help estimate 

phytoplankton community structure. Using AEP predictions, estimates of zooplankton from 

space could potentially be facilitated. Methods like SAGE, together with new technology, as 

well as the increasing in situ data available (e.g. TARA and follow on studies) for ground-

truthing, could together provide a step toward satellite based monitoring of the health of an 

ecosystem. 

The SAGE method provides a convenient way to assess some of the mechanisms that control 

the features in the provinces e.g. biomass/chlorophyll, net primary production and community 

structure. For example, the relative amount of diatoms is set by the imbalance in the Si to N,P 

and Fe supplies relative to the phytoplankton stoichiometric requirements. With balanced sup-

ply rates, communities are diatom dominated (L) and where supply rates are less balanced (i.e. 

with lower Si supply relative to the diatoms nutrient demands) diatoms comprise only a smaller 

fraction (K). Diazotrophs thrive where the Fe and P supplies are in excess of the N supplies (e.g. 

E and H). Explorations of controlling mechanisms are made signifcantly more useful through 

the context provided by AEPs. 
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The eco-provinces and AEPs are regions of similar community structures. A time-series 

from a location within one eco-province or AEP could be seen as a point of reference, and 

representative of the area covered by the eco-province or AEP. Long term in situ monitoring 

stations offer such time-series. Long term in situ data-sets will continue to be invaluable, and 

the SAGE method could be seen as a method to help determine locations where new sites would 

be most useful from the perspective of monitoring community structure. For example, the time-

series from ALOHA is in AEP B (Fig. 5c, label 2), in an oligotrophic region. Because ALOHA 

is close to the boundary to another AEP, the time-series may not be representative of the whole 

region, as previously suggested (33). Within the same AEP B, the time-series SEATS is south-

west of Taiwan (34), further from the boundaries of other AEPs (Fig. 5c, label 1), and could 

serve as a better location within which to monitor AEP B. The BATS time-series in AEP C 

(Fig. 5c, label 4) is very close to the border of AEPs C and F, suggesting that monitoring AEP 

C using the BATS time series directly could be problematic. The P Station (Fig. 5c, label 3) 

in AEP J is quite far from an AEP boundary, and could therefore be more representative. The 

eco-provinces and AEPs could help establish a monitoring framework suitable for assessing 

global change, as the provinces allow assessment of where in situ sampling could offer key 

insight. The SAGE method can be developed further for application to climatological data to 

assess temporal province variability. 

The success of the SAGE method is achieved through careful application of data science/ML 

methods, together with domain specifc knowledge. Specifcally, dimensionality reduction is 

performed using t-SNE, retaining the covariance structure of the high dimensional data, and 

facilitating visualising the covariance topology. The data is arranged in streaks and sheets of 

covariance (Fig. 2a), clearly indicating that purely distance based metrics such as k-means are 

inappropriate as they often assume a Gaussian (round) underlying distribution (discussed in note 
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S2). The DBSCAN method is appropriate for arbitrary covariance topologies, offering robust 

identifcation provided careful attention is given to setting parameters. The t-SNE algorithm is 

computationally costly, limiting its present application to larger data-volumes, meaning that ap-

plication to depth or time varying felds is diffcult. Work on the scalability of t-SNE is ongoing. 

The t-SNE algorithm has the potential to scale well in the future, as the Kullback-Leibler dis-

tance is readily parallelisable (35). Alternative promising methods of dimensionality reduction 

that to date scale better include the Uniform Manifold Approximation and Projection (UMAP) 

technique, but evaluation in the context of oceanographic data is necessary. Implications of 

better scalability would be classifcation e.g. over the mixed layer, for global climatologies 

or models with varying complexity. The regions that fail to be classifed within any province 

by SAGE can be seen as the remaining black dots in Fig. 2a. Geographically, these regions 

are largely in highly seasonal areas, suggesting that capturing the time evolving eco-provinces 

would provide better coverage. 

To construct the SAGE method, ideas from complex systems/data science have been lever-

aged. Exploiting the ability to determine clusters of functional groups (high probability of close 

proximity in an 11 dimensional space), and determine provinces. These provinces delineate 

a specifc volume in our 3 dimensional t-SNE phase space. Similarly, Poincaré sections can 

be used to assess the ”volume” of state space occupied by a trajectory, in order to determine 

”regular” or ”chaotic” behaviour (36). For the static 11 dimensional model output, the volume 

occupied after data is cast into a 3 dimensional phase space could be interpreted similarly. The 

relation between geographical area and the area in 3 dimensional phase space is not simple, but 

can be interpreted in terms of ecological similarity. The more conventional BC-dissimilarity 

metric was preferred for this reason. 
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Future work will repeat the SAGE method for seasonally varying data, to assess the spatial 

variability in the identifed provinces and AEPs. A future goal is to leverage this method to 

help determine which provinces could be determined by satellite measurements such as Chl-a, 

remotely sensed refectance, sea-surface temperature etc. This would allow remote sensing as-

sessments of ecological composition and highly agile monitoring of the eco-provinces and their 

variability. 

Materials and methods 

The purpose of this study is to present the SAGE method for defning eco-provinces by their dis-

tinct plankton community structure. Here more detail is provided on the physical/biogeochemical/ecosystem 

model, as well on parameter selection for t-SNE and DBSCAN algorithms. 

Model framework 

The physical component of the model comes from the Estimating the Circulation and Climate 

of the Ocean (ECCOv4, (37)) global state estimate described by (38). The state estimate has a 

nominally 1◦ resolution. A least-squares with Lagrange multipliers approach is used to obtain 

observationally adjusted initial and boundary conditions as well as internal model parameters, 

resulting in a free-running version of the MIT General Circulation Model (MITgcm, (39)) that 

is optimized to track observations. 

The biogeochemical/ecosystem is described more fully (i.e. equations and parameter values) 

in (2). The model captures the cycling of C, N, P, Si and Fe through inorganic and organic pools. 

The version used here includes 35 phytoplankton: 2 Pico-prokaryotes and 2 Pico-eukaryotes 
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(that are adapted to low nutrient environments), 5 coccolothophores (that have calcium car-

bonate coverings), 5 diazotrophs (that fx nitrogen gas, and thus are not limited by availability 

of dissolved inorganic nitrogen), 11 diatoms (that form silicous coverings), 10 mixotrophic 

dinofagellates (that can both photosynthesize and graze other plankton), and 16 zooplankton 

(which graze on other plankton). These are referred to as ”biogeochemical functional groups” 

as they each impact the biogeochemistry of the ocean differently (40, 41) and are frequently 

used in observational and modelling studies. In this model each functional group is made up 

of several plankton of different sizes spanning 0.6µm to 2500 µm equivalent spherical diameter. 

Parameters infuencing phytoplankton growth, grazing, and sinking are related to size, with 

specifc differences between the 6 phytoplankton functional groups (32). Results from this 51 

plankton component of the model has been used in several recent studies (42–44), though in a 

different physical framework. 

The coupled physical/biogeochemical/ecosystem model was run for 20 years from 1992-

2011. Output from the model includes the plankton biomass, nutrient concentrations, and rate 

of supply of the nutrients (DIN, PO4, Si, Fe). For this study, the 20 year mean of these outputs 

was used as the input for the eco-provinces. Distribution of Chl, plankton biomass, nutrient 

concentrations, as well as distributions of functional groups compare well with satellite and in 

situ observations (see (2, 44), and note S1, and Fig. S1-3). 

Parameter selection for t-SNE and DBSCAN 

For the SAGE method, the main source of stochasticity comes from the t-SNE step. Stochas-

ticity can hinder reproducibility, meaning that results are not robust. The SAGE method uses a 
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(a) Connectiveness (b) Coverage 

Figure 6: Setting the DBSCAN parameters. Setting the parameters for t-SNE the resultant 
number of found clusters is used as a measure of the connectiveness (Fig. 6a) and the percentage 
of the data assigned to a cluster (Fig. 6b). The red dot illustrates the optimal combination of 
coverage and connectedness. The minimum number was set on the basis of minimum number 
relevant for ecology. 

stringent test of robustness, by identifying one set of parameters for t-SNE and DBSCAN that 

consistently identify clusters when repeated. Determining t-SNE parameter ”perplexity” can be 

understood as determining the degree to which the mapping from high to low dimensionality 

should respect local or more global features of the data. A perplexity of 400 and 300 iterations 

was arrived at. 

For the clustering algorithm DBSCAN, the minimum size of the data points within a cluster, 

and the distance metric � need to be determined. The minimum number is set using expert 

guidance with knowledge of what is appropriate for the present numerical modeling framework 

and resolution, a minimum number of 100 was set. A higher minimum number (ca. < 135, 

before the upper band of green widens) could conceivably be used, but would be not be able 

to act as a substitute for the aggregation method based on the BC-dissimilarity. The degree 
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of connectiveness (Fig. 6a) is used to set the � parameter, favouring a higher coverage (Fig. 

6b). The connectiveness is defned as the resultant number of clusters, and is sensitive to the � 

parameter. A low connectiveness indicates under-ftting, artifcially grouping areas together. A 

high connectiveness indicates over-ftting. Over ftting is problematic also because it indicates 

that the initial stochastic guess can lead to results that are not reproducible. Between these two 

extremes there is a drastic increase (often referred to as an ”elbow”), indicating the optimal 

�. In Fig. 6a, a sharp increase is seen to a plateau (yellow, > 200 clusters), followed by a 

sharp decrease (green, 100 clusters) up to a minimum of ca 130, surrounded by regions of 

very few clusters (blue, < 60 clusters). In the blue regions for a minimum of 100, either one 

cluster largely dominates the whole ocean (� < 0.42), or most of the ocean is not classifed 

and is deemed as noise (� > 0.99). The yellow region has a highly variable, non-reproducible, 

cluster distribution, with increasing noise as � is reduced. The green region of sharp increase is 

referred to as the ”elbow”. This is the optimal region, where robust clusters can be identifed, 

as determined using the intra-province BC-dissimilarity, despite the probabilistic t-SNE. Using 

Fig. 6a and 6b � was set to 0.39. With a larger minimum number, arriving at an � that allows 

robust classifcation would be unlikely, with values > 135 seen to have a wider green region. 

The widening of this region suggests that the ”elbow” will be more diffcult to fnd, or absent. 
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Supplementary Materials 

Note S1: Model Evaluation 

The ecosystem model has been used in various ecological confguration and within different 

physical frameworks (2, 32, 42, 43). These studies have provided extensive evaluation against 

satellite and available in situ data. An evaluation is presented of the model output used in this 

study against satellite Chl-a, and against the in situ compilation of phytoplankton functional 

group biomass from the MAREDAT data-set (40). 

Comparing the model annual climatological surface (0-10m) Chl-a, to Ocean Colour Cli-

mate Change Initiative project (OC-CCI, 1998-2015) estimates of Chl-a (Fig. S1), the model 

is seen to capture the patterns of high Chl-a in both subpolar and equatorial upwelling regions, 

and captures low Chl-a in subtropical gyres. Only data for regions with full annual coverage are 

shown (optical satellite sensors do not capture a signal in the polar winters). Note that the satel-

lite estimates have non-negligible uncertainties associated with them (e.g. estimates have more 

than 35% errors (46)). The spatial resolution of the Darwin model does not capture important 

physical processes near coastlines, and lack of sedimentary and terrestrial supplies of nutrients 

and organic matter lead to Chl-a being too low in these regions. Chl-a is under-estimated by 

the model in the subtropical gyres, likely due to lack of mesoscale processes in the model that 

would supply additional nutrients in these regions (see e.g. (47)). The model Chl-a is higher 

than the satellite estimates in the Southern Ocean. There are likely regional biases in the satellite 

algorithms, these are potentially enhanced in Southern Ocean signals e.g. (48, 49). The model 

is also higher in the equatorial Pacifc, likely due to insuffcient iron limitation in this region. 

The model underestimates the Chl-a in the Atlantic Equatorial region. 
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The numerical model functional group distribution is compared to the latest compilation 

of observations (Fig. S2, (40), and references therein). Observations are sparse both tempo-

rally and spatially, and were averaged into 5 degree bins to facilitate visual comparison. Visual 

evaluation suggests that even with the spatial and temporal data taken into account overall fea-

tures are captured: the ubiquitous nature of the pico-phytoplankton, the limited domain of the 

diazotrophs (including observed lack of diazotrophs in the South Pacifc gyre), the pattern of 

enhanced diatom biomass in high latitudes, and low biomass in subtropical gyres. The model 

underestimates diazotrophy in the western equatorial Atlantic, possibly due to lack of riverine 

infux of nutrients/organic matter in this region. Coccolithophore biomass is overestimated rel-

ative to MAREDAT in many regions, but note that the conversion from cells to biomass in that 

compilation was estimated to have uncertainties of several 100% (50). 

Note S2: PCA and k-means methods in the presence of non-Gaussian covariance struc-

tures 

The interactions between the types and nutrient fuxes in the feature vector in this study 

are highly non-linear, implying an underlying distribution of the covariance structures are not 

Gaussian. The ultimate goal of clustering algorithms is to arrive at a statistical model that ap-

proximates the ”true” model from which the available data has been drawn. The underlying 

distribution of the data’s covariance structure has implications for which clustering algorithm is 

appropriate, because these are designed to ”identify” different types of underlying distributions. 

A Gaussian covariance would manifest as a ”round” shape. A more complex distribution will 

have a correspondingly complex ”shape”. Most clustering algorithms are well suited for data 

with an underlying Gaussian covariance distribution, but a highly non-Gaussian distribution of-
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S1: Model surface Chl-a comparison to satellite data. The model annual climatological 
surface (0-10m) Chl-a (top), and Ocean Colour Climate Change Initiative project (OC-CCI, 
1998-2015) (middle), and the bias (bottom). The model captures the patterns of high Chl-a in 
the subpolar regions and along the equatorial upwelling and low Chl-a in the subtropical gyres. 
Contours indicates 0.1 mg Chl/m−3 
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(a) Pico (b) Pico MAREDAT 

(c) Cocco (d) Cocco MAREDAT 

(e) Diaz (f) Diaz MAREDAT 

(g) Diatom (h) Diatom MAREDAT 

S2: Comparison of model and observational phytoplankton functional group biomass. 
Phytoplankton functional group biomass (mg C/m−3) from the numerical model (a, c, e, g) and 
MAREDAT (b, d, f, h) (40), biomass on log scale. 
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(a) (b) 

(c) (d) 

S3: Further context for the AEP of complexity 12. Comparison of the AEP complexity 12 to 
Longhurst (a), to the Chl-a 0.1 contour from the numerical model (b, see Fig S1), to the physical 
regimes in (19) (c), and a select number of physical regimes are overlaid (black contours) onto 
the AEP complexity 12 (d). Contours in c and d are overlaid as visual aids, and not all regions 
are shown. 
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ten requiring a more specialized approach. The choice of algorithm needs to be tailored to the 

data (e.g. DBSCAN in this study), and the results verifed and validated to the extent that this 

is possible to avoid false positives. Starting to explore a new dataset, there is no a-priori reason 

to assume that the covariance ot the data is not Gaussian as a frst guess, and moving to a more 

complicated, and potentially computationally expensive, method is frst merited when simpler 

approaches fail. In this study, the initial analysis of the feature vector was done using methods 

assuming an underlying Gaussian covariance distribution; Principal component analysis (PCA) 

for the initial dimensionality reduction and k-means to identify clusters. 

Having widespread use for dimensionality reduction (51,52), PCA increases interpretability 

and minimizes information loss. Solving an eigenvector/eigenvalue problem, PCA imposes a 

geometric constraint as the covariance matrix of the remaining subset of features is always diag-

onal, and that the data can be represented by a linear combination of the identifed eigenvectors. 

The new uncorrelated features (variables) successively maximize variance, but the main use of 

PCA should be descriptive rather than inferential. For example, for spatial patterns the orthogo-

nality constraint can give rise to spurious global structures with large amplitude even when the 

true pattern is known to be local. 

The implication of assuming that linear combinations of the input features can capture the 

dominant underlying patterns, is that PCA is the optimal method for dimensionality reduction 

if the underlying covariance structure is Gaussian. If the input features interact non-linearly, the 

underlying covariance structure is likely to be non-Gaussian. These features will not be detected 

by the PCA. It follows that feature normalization and standardization are recommended steps. 

The clustering algorithm k-means minimizes the average squared Euclidean distance from 
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one data point to a cluster centroid (k), where each data point belongs to the cluster with the clos-

est mean. In our application, the types and nutrient fux data would be the dimensions/feature 

space that the k-means algorithm operates in. It effectively partitions the parameter space us-

ing Voronoi cells (straight lines). Relying on Euclidean distances, k-means assumes that the 

underlying covariance distribution associated with the clusters is Gaussian, looking for ”round” 

shapes. As with PCA, this assumption can mean that the algorithm fails in the presence of non-

Gaussian distributions. 

The clustering algorithm is used to arrive at a statistical model that can represent the process 

that generated the data. To assess if robust clusters have been identifed in the types and nutrient 

fux data, the goodness-of-ft of the k-means algorithm as compared to the ”true” model that 

generated the data should be assessed. If successful, different numbers of parameters (k clus-

ters) approximate the data, but the models can over, and under, ft. The optimal model in the 

context of k-means is the one arrived at with a number of k that closest approximates the ”true” 

model. If the ”true” model is known, the Kullback-Leibler divergence (cross entropy+entropy) 

can be used. In most cases the ”true” model is unknown, and it is common practice to assess 

the goodness-of-ft using information criteria. The advantage of using t-SNE comes from that 

the original high dimensional data is used as the ”true” model and the Kullback-Leibler di-

vergence can in this manner probabilistically compress the high dimensional data onto lower 

dimensions. In this manner the topology of the data is conserved in the lower dimensional ren-

dition. 

Akaike (1971) formalised the intuition that some information is lost using a model to rep-

resent the process that generated the original data (53). The Akaike Information Criteria (AIC) 

estimates the relative amount of information lost by a given model. The AIC approximates the 
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”true” model by penalising an increase in candidate model complexity (for k-means increasing 

the number of k) using the likelyhood-function. For large volumes of data, the AIC is an asymp-

totically unbiased estimate of the cross-entropy risk, meaning that the model with the minimum 

AIC score will possess the smallest Kullback-Leibler divergence. Using this number of k gives 

us the statistical model that best approximates the underlying ”true” model that generated the 

data (54). The Bayesian Information Criteria (BIC) is also based on the likelihood-function, 

estimating a function of the posterior probability of a model being true. The BIC has a higher 

penalty for increasing candidate model complexity. Both the AIC and BIC are based on assump-

tions and asymptotic approximates, implying that they should only disagree if the AIC chooses 

a larger number of parameters than the BIC. For practical applications as in (19, 22) where 

k-means is used, the combination of the AIC and BIC is recommended to assess goodness-of-

ft (55). As an example, if the BIC reaches a minimum and starts increasing, while the AIC 

asymptotes shortly thereafter, a parameter number between the BIC minimum and the point 

where the AIC asymptotes is optimal. 

Both PCA and k-means minimize the mean-squared reconstruction error, and PCA is a 

super-sparse k-means (56). Applying PCA reduces the number of ”features” while preserving 

the variance. K-means reduces the number of data points, assigning them to the clusters, but 

it does not preserve the underlying covariance distribution of the data. This implies that k-

means and PCA will agree only when the cluster centroids is suffciently close to the PC. Note 

that other PCA methods exist e.g. kernel based, but are recommended only in situations where 

known non-linear relationships and correlations exist. 

A practical example, and cautionary note, is given using the data from the Darwin model. 

For this data the results that the k-means algorithm produce can look reasonable (Figure S4a). 
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(a) Spatial projection with k=350 (b) AIC and BIC 

S4: Illustration of k-means applied to the Darwin data. 

Although the results visually look reasonable, the AIC and BIC test both failed, with and with-

out PCA as a dimensionality reduction method (Figure S4b). The failure of the AIC and BIC 

test suggests that the underlying covariance distribution of the data is highly non-Gaussian, 

such that the statistical models like k-means fail to converge. This implies that the models are 

not able represent the underlying ”true” model, because the centroids are not able to partition 

the feature space so that e.g. consistent regions can be found. The suggested importance of 

the highly non-linear interactions in the Darwin data means that a different algorithm could be 

more appropriate. With the application of t-SNE, a clustering algorithm, in the Darwin model 

case DBSCAN, can be chosen such that emergent features of the non-linear, and non-Gaussian 

covariance, of the data can be captured. 
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